2011-2015

  1. 2015
  2. Molecular Breeding of Japanese Gentians— Applications of Genetic Transformation, Metabolome Analyses, and Genetic Markers. Nishihara, M., Mishiba, K., Imamura, T., Takahashi, H., Nakatsuka, T. In The Gentianaceae - Volume 2: Biotechnology and Applications. Springer.[link]
  3. Isolation and characterization of the C-class MADS-box gene involved in the formation of double flowers in Japanese gentian. Nakatsuka, T, Saito, M., Yamada, Y., Fujita, K., Yamagishi, N., Yoshikawa, N., Nishihara, M. BMC Plant Biology 15:182 [Open Access]
  4. Characterization of spermidine synthase and spermine synthase — the polyamine-synthetic enzymes that induce early flowering in Gentiana triflora. Imamura, T., Fujita, K., Tasaki, K. Higuchi, A. and Takahashi, H. Biochem. Biophys. Res. Commun. 463, 781-786. (link)
  5. Gentiobiose feeding in gentian in vitro overwintering buds or plantlets. Takahashi, H., Nishihara, M. Bio-protocol Bio-protocol. 5(12), e1499. [link]
  6. Identification of the glucosyltransferase that mediates direct flavone C-glucosylation in Gentiana triflora. Sasaki, N., Nishizaki, Y., Yamada, E., Tatsuzawa, F., Nakatsuka, T. Takahashi, H., Nishihara, M. FEBS Letters 589: 182-187 [link]
  7. Achievements and perspectives in biochemistry concerning anthocyanin modification for blue flower coloration. Sasaki, N., Nakayama, T. Plant and Cell Physiology 56:28-40 [link]

2014

  1. Molecular characterization of mutations in white-flowered torenia plants. Nishihara, M., Yamada, E., Saito, M., Fujita, K., Takahashi, H., Nakatsuka, T. BMC Plant Biology 14: 86. [Open Access]
  2. Silencing of DS2 aminoacylase-like genes confirms salicylic acid-dependent resistance to Phytophthora infestans in Nicotiana benthamiana. Nakano, M., Nishihara, M., Yoshioka, H., Ohnishi, K., Hikichi, Y., Kiba, A. Plant Signaling & Behavior 9: e28004 (link)
  3. 植物の香りと色の代謝工学が拓く新時代. 有村源一郎・西原昌宏・下田武志 バイオサイエンスとインダストリー Vol.72 No.3 197-202. (link)
  4. High concentrations of sucrose induce overwintering bud formation in gentian plantlets cultured in vitro. Imamura, T., Higuchi, A., Sekine, K.T., Yamashita, T., Takahashi, H. Plant Biotechnology 31: 97-104 [link]
  5. Mitsunami, T., Nishihara, M., Galis, I., Alamgir, KM., Hojo, Y., Fujita, K., Sasaki, N., Nemoto, K., Sawasaki, T., Arimura, G. (2014) Overexpression of the PAP1 transcription factor reveals a complex regulation of flavonoid and phenylpropanoid metabolism in Nicotiana tabacum plants attacked by Spodoptera litura. PLoS ONE 9: e108849. [PLoS One LINK]
  6. The gentio-oligosaccharide gentiobiose functions in the modulation of bud dormancy in the herbaceous perennial Gentiana. Takahashi, H., Imamura, T., Konno, N., Takeda, T., Fujita, K., Konishi, T., Nishihara, M., Uchimiya, H. Plant Cell 26:3949-3963 [link]
  7. Gentiolactone, a secoiridoid dilactone from Gentiana triflora, inhibits TNF-α, iNOS and Cox-2 mRNA expression and block NK-κB promoter activity in murine macrophages. Yamada, H., Kikuchi, S., Inui, T., Takahashi, H., and Kimura, K.I. PLoS ONE. 9, e113834. [PLoS One LINK]
  8. Transcriptional regulators of flavonoid biosynthesis and their application to flower color modification in Japanese gentians. Nakatsuka, T., Sasaki, N., Nishihara, M. Plant Biotechnology 31: 389-399 [link]

2013


  1. Efficient haploid and double haploid production from unfertilized ovule culture of gentians (Gentiana spp.). Doi, H., Hoshi, N., Yamada, E., Yokoi, S., Nishihara, M., Hikage, T. and Takahata, Y. Breeding Science 63: 400-406. [Open Access]
  2. Heterologous expression of gentian MYB1R transcription factors suppresses anthocyanin pigmentation in tobacco flowers. Nakatsuka, T., Yamada, E., Saito, M., Fujita, K. and Nishihara, M. Plant Cell Reports 32: 1925-1937. [Springer LINK]
  3. Suppression of DS1 phosphatidic acid phosphatase confirms resistance to Ralstonia solanacearum in Nicotiana benthamiana. Nakano, M., Nishihara, M., Yoshioka, H., Takahashi, H., Sawasaki, T., Ohnishi, K., Hikichi, Y. and Kiba, A. PLoS One 8: e75124. [PLoS One LINK]
  4. Metabolic engineering of the C16 homoterpene TMTT in Lotus japonicus through overexpression of (E,E)-geranyllinalool synthase attracts generalist and specialist predators in different manners. Brillada,C. Nishihara, M., Shimoda, T., Garms, S., Boland, W., Maffei, ME. and Arimura, G. New Phytologist 200: 1200-1211. [Wiley link]
  5. Frontiers of torenia research: innovative ornamental traits and study of ecological interaction networks through genetic engineering. Masahiro Nishihara, Takeshi Shimoda, Takashi Nakatsuka, Gen-ichiro Arimura. Plant Methods 9: 23. [Open Access]
  6. Genetic engineering of yellow betalain pigments beyond the species barrier. Nakatsuka, T., Yamada, E., Takahashi, H., Imamura, T., Suzuki, M., Ozeki, Y., Tsujimura, I., Saito, M., Sakamoto, Y., Sasaki, N. and Nishihara, M. Scientific Reports 3: 1970. [Open Access]
  7. Inheritance of brown leaf spot disease resistance in gentians. Nekoduka, S., Horaguchi, H., Akasaka, S., Chiba, K., Hikage, T., Kawamura, H., Nakatsuka, T. and Nishihara, M. Journal of General Plant Pathology 79: 165-167. [Springer Link]
  8. Gentian Kobu-sho-associated virus: a tentative, novel double-stranded RNA virus that is relevant to gentian Kobu-sho syndrome. Kobayashi, K., Atsumi, G., Iwadate, Y., Tomita, R., Chiba, K., Akasaka, S., Nishihara, M., Takahashi, H., Yamaoka, N., Nishiguchi, M. and Sekine, K. Journal of General Plant Pathology 79: 56-53 [Springer Link]
  9. Dehydrins are highly expressed in overwintering buds and enhance drought and freezing tolerance in Gentiana triflora. Imamura, T., Higuchi, A., and Takahashi, H. Plant Science 213: 55-66. [PubMed]
  10. Metabolite profiling reveals tissue- and temperature-specific metabolomic responses in thermoregulatory male florets of Dracunculus vulgaris (Araceae). Ito, K., Takahashi, H., Umekawa, Y., Imamura, T., Kawasaki, S., Ogata, T., Kakizaki, Y., and Seymour, R.S. Metabolomics 9: 919-930. [link]
  11. NAD+ Accumulation during Pollen Maturation in Arabidopsis Regulating Onset of Germination. Hashida, S.N., Takahashi, H., Takahara, K., Kawai-Yamada, M., Kitazaki, K., Shoji, K., Goto, F., Yoshihara, T., and Uchimiya, H. Molecular Plant 6: 216-25. [PubMed]


2012

  1. Construction of the first genetic linkage map of Japanese gentian (Gentianaceae). Nakatsuka T, Yamada E, Saito M, Hikage T, Ushiku Y and Nishihara M. BMC Genomics 13: 672. [Open Access]
  2. Isolation and characterization of GtMYBP3 and GtMYBP4, orthologues of R2R3-MYB transcription factors that regulate early flavonoid biosynthesis, in gentian flowers. Nakatsuka T, Saito M, Yamada E, Fujita K, Kakizaki Y, Nishihara M. Journal of Experimental Botany 63: 6505-6517. [PubMed]
  3. Acquired immunity of transgenic torenia plants overexpressing agmatine coumaroyltransferase to pathogens and herbivore pests. Muroi, A., Matsui, K., Shimoda, T., Kihara, H., Ozawa, R., Ishihara, A., Nishihara, M. and Arimura, G. Scientific Reports 2: 689. [Open Access]
  4. Isolation and characterization of an asparagine-rich protein that regulates hypersensitive cell death-mediated resistance in Nicotiana plants. Komori, D., Nishihara, M., Takahashi, A., Gupta, M., Yoshioka, H., Mizumoto, H., Ohnishi, K. and Hikichi, Y. and Kiba, A. Plant Biotechnology 29: 293-300.
  5. Plant-plant-plant communications, mediated by (E)-β-ocimene emitted from transgenic tobacco plants, prime indirect defense responses of lima beans. Arimura, G., Muroi, A., Nishihara, M. Journal of Plant Interactions. 7: 193-196. [Abstract]
  6. The effect of genetically enriched (E)- β-ocimene and the role of floral scent in the attraction of the predatory mite Phytoseiulus persimilis to spider mite-induced volatile blends of torenia. Shimoda, T., Nishihara, M., Ozawa, R., Takabayashi, J., Arimura, G. New Phytologist 193: 1009-1021. [PubMed]
  7. Gentian lipid transfer protein homolog with antimicrobial properties confers resistance to Botrytis cinerea in transgenic tobacco. Kiba, A., Nakatsuka, T., Yamamura, S., Nishihara, M. Plant Biotechnology 29: 95-101. [Abstract]
  8. Development of DNA markers that discriminate between white- and blue-flowers in Japanese gentian plants. Nakatsuka, T., Saito, M., Sato-Ushiku, Y., Yamada, E., Nakasato, T., Hoshi, N., Fujiwara, K., Hikage, T. and Nishihara, M. Euphytica 184: 335-344. [Springer Link]
  9. Modification of light quality improves growth and medicinal quality of clonal explants derived from herbal plant Gentiana. Takahashi, H., Yamada, H., Yoshida, C., and Imamura, T. Plant Biotechnology 29: 315-318. [link]
  10. Characterization of β-N-acetylhexosaminidase (LeHex20A), a member of glycoside hydrolase family 20, from Lentinula edodes (shiitake mushroom). Konno, N., Takahashi, H., Nakajima, M., Takeda, T., and Sakamoto, Y. AMB Express 2: 29. [PubMed]
  11. Comparative metabolomics of developmental alterations caused by mineral deficiency during in vitro culture of Gentiana triflora. Takahashi, H., Imamura, T., Miyagi, A., and Uchimiya, H. Metabolomics 8: 154-163. [link]


2011

  1. A single-base substitution suppresses flower color mutation caused by a novel miniature inverted-repeat transposable element in gentian. Nishihara, M., Hikage, T., Yamada, E. and Nakatsuka, T. Molecular Genetics and Genomics 286: 371-382. [PubMed]
  2. The composite effect of transgenic plant volatiles for acquired immunity to herbivory caused by inter-plant communications. Muroi, A., Ramadan, A., Nishihara, M., Yamamoto, M., Ozawa R., Takabayashi, J. and Arimura, G. PLoS One 6(10): e24594. [PLoS One LINK]
  3. Development of simple sequence repeat markers for identification of Japanese gentian cultivars. Sato-Ushiku, Y., Shimada, N., Saito, M., Yamada, E., Hikage, T., Nakatsuka, T. and Nishihara, M. Journal of Japanese Society for Horticultural Science 80: 475-485. [Abstract]
  4. Gynogenesis in gentians (Gentiana triflora, G. scabra) : production of haploids and doubled haploid. Doi, H., Yokoi , S., Hikage, T., Nishihara , M., Tsutsumi, K. and Takahata, Y. Plant Cell Reports 30:1099-1106. [PubMed]
  5. The gentian orthologues of FT/TFL1 gene family control floral initiation in Gentiana. Imamura, T., Nakatsuka, T., Higuchi, A., Nishihara, M. and Takahashi, H. Plant and Cell Physiology 52: 1031-1041. [PubMed]
  6. Production of picotee-type flowers in Japanese gentian by CRES-T. Nakatsuka, T., Saito, M., Yamada, E. and Nishihara, M. Plant Biotechnology 28: 173-180. [J-STAGE]
  7. A flavonol synthase gene GtFLS defines anther-specific flavonol accumulation in gentian. Kimura, S., Nakatsuka, T., Yamada, E., Saito , M. and Nishihara, M. Plant Biotechnology 28: 211-221. [J-STAGE]
  8. De novo DNA methylation of the 35S enhancer revealed by high-resolution methylation analysis of an entire T-DNA segment in transgenic gentian. Yamasaki, S., Oda, M., Koizumi, N., Mitsukuri, K., Johkan, M., Nakatsuka, T., Nishihara, M. and Mishiba, K. Plant Biotechnology 28: .223-230. 2011. [J-STAGE]
  9. Epigenetic modifications of the 35S promoter in cultured gentian cells. Yamasaki, S. Oda, M., Daimon, H., Mitsukuri, K., Johkan, M., Nakatsuka, T., Nishihara, M. and Mishiba, K. Plant Science 180: 612-919. [PubMed]
  10. The new FioreDB database provides comprehensive information on plant transcription factors and phenotypes induced by CRES-T in ornamental and model plants. Mitsuda, N., Takiguchi, Y., Shikata, M., Sage-Ono, K., Ono, M., Sasaki, K., Yamaguchi, H., Narumi, T., Tanaka, T., Sugiyama, M., Yamamura, T., Terakawa, T., Gion, K., Suzuri, R., Tanaka, Y., Nakatsuka, T., Kimura, S., Nishihara, M., Sakai, T., Endo-Onodera, R., Saitoh, K., Isuzugawa, K., Oshima, Y., Koyama, T., Ikeda, M., Narukawa, M., Matsui, K., Nakata, M., Ohtsubo, N. and Ohme-Takagi, M. Plant Biotechnology 28: 123-130. [J-STAGE]
  11. Genetic engineering of flavonoid pigments to modify flower color in floricultural plants. Nishihara, M. and Nakatsuka, T. Biotechnology Letters 33: 433-441. [PubMed]
  12. Fate of 13C in metabolic pathways and effects of high CO2 on the alteration of metabolites in Rumex obtusifolius L. Miyagi, A., Takahara, K., Kasajima, I., Takahashi, H., Kawai-Yamada, M., and Uchimiya, H. Metabolomics 7: 524-535. [link]